
SIRA-PCR: Sim-to-Real Adaptation for 3D Point Cloud Registration

Suyi Chen1,4* Hao Xu2* Ru Li3 Guanghui Liu1† Chi-Wing Fu2 Shuaicheng Liu1,4†

1University of Electronic Science and Technology of China
2The Chinese University of Hong Kong 3Harbin Institute of Technology 4Megvii Technology

Abstract

Point cloud registration is essential for many applica-
tions. However, existing real datasets require extremely
tedious and costly annotations, yet may not provide accu-
rate camera poses. For the synthetic datasets, they are
mainly object- level, so the trained models may not gen-
eralize well to real scenes. We design SIRA- PCR, a new
approach to 3D point cloud registration. First, we build
a synthetic scene- level 3D registration dataset, specifically
designed with physically- based and random strategies to
arrange diverse objects. Second, we account for varia-
tions in different sensing mechanisms and layout place-
ments, then formulate a sim- to- real adaptation framework
with an adaptive re- sample module to simulate patterns in
real point clouds. To our best knowledge, this is the first
work that explores sim- to- real adaptation for point cloud
registration. Extensive experiments show the SOTA per-
formance of SIRA- PCR on widely- used indoor and out-
door datasets. The code and dataset will be released on
https://github.com/Chen- Suyi/SIRA_Pytorch.

1. Introduction
3D point cloud registration is a fundamental task, re-

ceiving incredible attention from both the industry and
academia, due to its wide applications in robotics [19, 42,
39], graphics [85], computer vision [14, 27], etc. Given a
partially overlapping point cloud pair, the algorithm is re-
quired to predict a 3D rigid transformation to align them.

Recent data-driven deep-learning-based methods have
attained remarkable success in indoor scenarios [6, 12,
13, 29, 80, 79]. To support the training, commonly-used
datasets can be divided into two categories: (i) object
level, e.g., ModelNet40 [70] and ShapeNet [10], and (ii)
indoor-scene level, e.g., 3DMatch [81]. However, the model
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Figure 1. We construct the first large-scale scene-level synthetic
dataset for point cloud registration, called FlyingShapes, by in-
serting objects into simple indoor scenes through physically-based
and random strategies. Then, a generative-based pipeline, named
SIRA, is designed for sim-to-real adaptation. Qualitative results
show the performance improvement of our approach.

trained on the synthetic object-level dataset can hardly gen-
eralize to real-world indoor scenarios, since the object data
has strong shape priors while the geometric structures in in-
door scenes are much more complex and diverse. Though
directly adopting real-captured datasets can produce sat-
isfying performance, collecting a large amount of data is
highly time-consuming. Also, obtaining accurate ground-
truth labels is expensive, since the estimated camera poses
are prone to errors, so human annotations are needed.

A straightforward avenue to overcome such data scarcity
is to utilize simulation data, in which both the data collec-
tion and annotation can be done automatically. To leverage
existing synthetic 3D indoor scene-level datasets to form
the training data for point cloud registration, there are mul-
tiple options, e.g., SUNCG [60], OpenRooms [40], Struc-
tured3D [84], and 3D-FRONT [21]. Specifically, SUNCG
has left an apparent void in the community. OpenRooms
and Structured3D mainly aim to provide photo-realistic



scene images, without providing CAD models. Though 3D-
FRONT provides CAD models of rooms and a portion of
the furniture, its layouts are relatively simple and more reg-
ular than the real ones. To sum up, using existing synthetic
data to train a model for point cloud registration has two
main challenges: (i) simulated scenes lack complicated ge-
ometric structures, since they only contain limited varieties
of furniture. A robust feature descriptor and precise fea-
ture matching heavily rely on diverse structures in data; and
(ii) the point pattern gap, owing to different sensing mech-
anisms. Simulated scenes tend to contain smooth surfaces
with regularly-distributed points, while real scenes exhibit
noise and more irregular patterns. Particularly, the feature
descriptor is sensitive to the low-level point distribution.

To address challenge (i), inspired by FlowNet [17], we
build the first large-scale indoor synthetic dataset named
FlyingShapes, on the simulated dataset 3D-FRONT. Specif-
ically, we enrich the local geometric structures by utilizing
the object-level ShapeNet dataset as an additional source.
We design strategies to randomly arrange objects from
ShapeNet on the surfaces of some furniture and in the mid-
air of the 3D-FRONT rooms. For challenge (ii), we develop
a generative sim-to-real adaptation pipeline, named SIRA.
In particular, we design an Adaptive Re-sample Module
(ARM) and insert it after different layers of the generator to
adaptively adjust point positions in multiple ranges. Lastly,
we take the generated point clouds to train the point cloud
registration network.

Our main contributions are three-fold:

• We construct the first large-scale indoor synthetic
dataset, named FlyingShapes, on the simulated dataset
3D-FRONT for 3D point cloud registration.

• We design a generative sim-to-real adaptation pipeline
named SIRA, with an adaptive re-sample module for-
mulated to mitigate the low-level point cloud distribu-
tion domain gap. To our best knowledge, this is the
first work that exploits domain adaptation strategies to
enhance the 3D point cloud registration task.

• Extensive qualitative and quantitative comparisons on
both indoor and outdoor datasets show the state-of-the-
art performance of our method.

2. Related Work
3D Point Cloud Registration aims to estimate 3D rigid
transforms to align point clouds. This task is challenging,
mainly due to the partiality of the 3D point clouds. Accord-
ing to the technical pipeline, previous approaches can be
divided into two categories: (i) direct registration methods
and (ii) correspondence-based methods.

The former category can be further classified into two
classes. Some methods [4, 30, 72, 73] regress the transfor-
mation from extracted global features of the point clouds.

The other methods [67, 68, 34, 78, 23] leverage the differ-
entiable weighted SVD to compute the transformation from
the extracted correspondences. These methods obtain satis-
fying results on synthetic object-level datasets but they can
hardly generalize to large-scale scenes as described in [29].

The latter category extracts correspondences between
two point clouds and then estimates the transformation us-
ing traditional or deep-learning-based pose estimators. Ear-
lier traditional approaches [8, 53, 57, 76, 52, 54] rely on
handcrafted features to estimate the correspondences, and
apply RANSAC [20] to find the final transformation. Nev-
ertheless, they are easily disturbed by partiality or noise,
and RANSAC is time-consuming. More recent meth-
ods [12, 25, 6, 3, 47, 65, 80, 79, 51, 66, 75, 38] utilize
convolution neural networks to construct more powerful de-
scriptors. Some of them [5, 11, 46] propose deep robust es-
timators or carefully-designed strategies to improve the ac-
curacy and speed of the transformation calculation. Though
these methods achieve prominent performance on various
indoor scene datasets, they require large-scale human anno-
tations, which can be expensive and error-prone. This mo-
tivates us to address the data scarcity issue using simulation
data. Our experimental investigation is built upon the Geo-
Transformer (GeoTrans) [51] due to its high performance.

Unsupervised Domain Adaptation solves the distribu-
tion shift that exists between the source and target do-
mains [24, 41, 7, 59]. Extensive works have been proposed
to perform the unsupervised domain adaptation (UDA) on
2D vision tasks [31, 35, 58, 18, 16, 82, 62, 63], while in 3D
point cloud tasks, UDA is a developing research topic [74,
69, 9, 33]. Qin et al. proposed PointDAN [50], which ap-
plies the Maximum Classifier Discrepancy (MCD) [55] to
achieve the alignment in feature space, and is the first work
to address the point cloud task in the UDA context. Some
subsequent works utilized self-supervised learning to solve
the domain alignment among representative 3D point cloud
tasks, including segmentation [15, 1], detection [77] and
classification [86, 2]. For 3D point cloud registration, Ho-
rache et al. [28] proposed UDGE to generate pairs with-
out ground-truth transformations for unsupervised transfer
learning. There are some methods that apply the genera-
tive adversarial network (GAN) architecture [26, 37, 36] to
perform domain adversarial training and enforce the fea-
tures of point clouds from both domains to be indistinguish-
able by the discriminators [56, 83, 71, 45]. We also design
a generative-based pipeline to create more realistic point
clouds from synthetic data.

3. Method
3.1. Overview

Fig. 2 illustrates the framework of our method. We con-
struct the first large-scale indoor synthetic dataset, Flying-



Figure 2. Our SIRA-PCR framework: (i) FlyingShapes is a large-scale indoor synthetic dataset for point cloud registration, which is
constructed by applying physically-based and random strategies to insert ShapeNet models into the 3D-FRONT scenes; (ii) SIRA is then
applied for sim-to-real domain adaptation on point cloud patches; (iii) the generated synthetic dataset is used to train registration models.

Shapes, for 3D point cloud registration (Sec. 3.2). Then,
to further mitigate the domain shifts between FlyingShapes
and real-world datasets, rendered point clouds are fed into
our SIRA pipeline, where a generative-based sim-to-real
domain adaptation network is applied to alleviate the pattern
gap (Sec. 3.3). Concurrently, the processed point clouds are
used to train the registration methods (Sec. 3.4.). Finally,
details of the loss functions are presented in Sec. 3.5.

3.2. FlyingShapes Dataset

To prepare data for training registration methods from
synthetic datasets, directly rendering point clouds is unre-
liable mainly due to two problems: (i) scenes with sim-
ple structures have little contributions to improve registra-
tion performance; and (ii) low-quality viewpoints result in
meaningless point clouds. We carefully design strategies to
overcome these issues.

Geometric Augmentation. Although the furniture and
room layout in 3D-FRONT is carefully designed by profes-
sional designers, compared to real-world layouts, it is still
much simpler since the furniture is always placed regularly
and only covers a limited portion of categories. To tackle
these problems, inspired by FlowNet [17] and FlyingTh-
ings3D [44], we augment geometric structure diversity by
randomly adding and arranging objects from ShapeNet into
scenes of 3D-FRONT. Specifically, the objects are added to
scenes in two manners: (i) physically-based insertion. To
simulate the cluttered item combinations placed on furni-
ture with a platform, e.g., desks and cabinets, in the real
world, we randomly choose and arrange objects on the sur-
faces of the furniture until collision happens; (ii) random
insertion. We randomly scale, rotate, and place objects in
the empty space of each room with a specific density of 0.2

objects per cubic meter. In addition, we find that the frac-
tion of different types of geometric structures in the dataset
can influence the performance of models. In most cases,
planes, which are provided mainly by floors, walls, and ceil-
ings, occupy a much larger fraction of all scenes than other
structures; however, they provide limited contributions to
the generalization of the feature descriptor and make the
network overly focused on simple structures. To this end,
we remove flattened planes with a probability of 50% for
balancing different structures.

High-quality Viewpoints Selection. Given the scene
mesh, finding a proper viewpoint to capture an informa-
tive point cloud automatically is non-trivial. Although 3D-
FRONT provides example camera locations, they contain
low-quality views. We first set the depth clip to filter invalid
views, which are too close to surfaces. Then, for each view-
point, the number of materials is utilized to filter the views
lacking geometric structures due to few objects. Specifi-
cally, we render the instance segmentation map according to
different materials, which is further used to count the num-
ber of objects within the current view. The view with less
than 5 valid objects/furniture is labeled as “invalid” and not
taken into our consideration. In addition, since most data in
3DMatch is captured by the human-held camera, we set the
height of the cameras to 1.6m to simulate the human visual
experience. Also, the range of view is set to [0°, 360°]/[0°,
45°] in the horizontal/vertical direction, and we uniformly
sample views with an interval of 30°/15°.

Registration Data Preparation. In order to simulate the
occlusion among objects and the imaging procedure of
RGB-D cameras, we first adopt a virtual perspective camera
to render a depth map for each viewpoint and then convert
it into the point cloud. After that, ground-truth correspon-



dences of overlapping point cloud pairs are easily estab-
lished given accurate camera poses. Following 3DMatch,
point cloud pairs whose overlap ratio is below 30% are not
taken into consideration.

3.3. Sim-to-Real Adaptation

Given a synthetic point cloud Ps ∈ RNs×3 and a real
point cloud Pr∈RNr×3, SIRA is designed to convert Ps to
P̂s ∈RNs×3, which has similar point pattern distribution as
Pr and keep the same shape as Ps.

Generator. The generator G(·) can be seen as an auto-
encoder structure, which consists of two parts, i.e., an en-
coder for extracting features from point clouds and a de-
coder for recovering points from features. We utilize the
KPConv-FPN backbone [61] to extract multi-level features
for the point clouds. At the l-th stage of downsampling,
downsampled points Pl

s ∈ RNl×3 are regarded as super-
points, and their features Fl

s ∈ RNl×dl are extracted from
corresponding local patches. As for the (L−l+1)-th stage
of upsampling, features of superpoints HL−l+1

s are first as-
signed to their nearest points in the upsampled dense point
cloud Pl−1

s . Then, the features Fl
s are fetched through a

skip connection and concatenated with HL−l+1
s . The entire

process can be formulated as

ĤL−l+1
s = Assign{HL−l+1

s ,NN{Pl
s,P

l−1
s }}, (1)

HL−l
s = MLP(Cat{Yl

s,F
l
s, Ĥ

L−l+1
s }), (2)

where Assign{., .} denotes the feature assignment pro-
cess according to the relationship of the nearest neighbors
NN{., .} between Pl

s and Pl−1
s . Yl

s is the output of the
l-th ARM, where point positions are adjusted adaptively.
Cat{., .} means the concatenate operation along the fea-
ture channel dimension. L is the total number of downsam-
pling/upsampling layers. After that, we use a three-layer
MLP as a decoder to regress point cloud coordinates after
sim-to-real adaptation.

Adaptive Re-sample Module. Since central point coor-
dinates are subtracted from the local patches, features ex-
tracted by KPConv are translation invariant, which means
the absolute location information of each point is lost.
Consequently, the subsequent decoder cannot recover point
clouds with the same shape as the input. A straightforward
solution is to concatenate the coordinate of each point to its
corresponding feature as positional embedding during up-
sampling. However, such a practice would limit the varia-
tion of the point positions recovered by the decoder and fur-
ther limit the ability to imitate the point pattern gap. In or-
der to enhance the capability of the generator to adjust point
positions, we propose an adaptive re-sample module, ARM,
to modify point positions while keeping the outline of a 3D
surface made up of points. Several ARMs are inserted into
different levels of the generator. For the l-th ARM, given

Figure 3. A 2D example and details of our proposed ARM, which
re-samples a point Pc to P ′

c from the convex hull by adjusting the
weights wi, i = 1..5.

the input coordinate matrix Ps ∈RNl×3, we construct a lo-
cal patch Pi using the K neighbors for each point pi. Here,
we ignore the superscript l to simplify the notation. Each
point of the output coordinate matrix Ys ∈ RNl×3 is the
weighted sum of all points within the patch, i.e.,

yi =

K∑
k=1

wi,kp
P
i,k,

K∑
k=1

wi,k = 1, (3)

where pP
i,k ∈ Pi is the k-th neighbor point of pi. yi is the

re-sampled point. wi,k is the k-th element of wi which is
computed by the corresponding features of pi and Pi,

wi = softmax

(
(FP

i W
A)(fiW

A)T√
d

)
. (4)

Here, fi∈Rd and FP
i ∈RK×d denote the corresponding fea-

tures of pi and Pi, respectively. WA∈Rd×d is an affine ma-
trix. The detail process is shown in Fig. 3(a). Note that yi is
the convex combination of Pi, which means its position is
within the convex hull of the patch. Fig. 3(b) provides a 2D
example for better understanding. The convex hull can well
approximate the shape of its corresponding local patch Pi

if K is chosen small enough, e.g., 10, and yi can be further
regarded as a re-sampled point in that patch.

Multi-scale Discriminator. Though PointNet [49] is the
most suitable structure of discriminator as is analyzed in
previous work [64], directly applying it on the entire point
cloud is not appropriate in our setting. Since SIRA is ap-
plied on small point cloud patches, it requires the discrim-
inator to possess the ability to determine the real/fake clas-
sification of the low-level point distribution. However, the
extracted global feature from the entire point cloud lacks
information on detailed structures. To this end, we first
split point clouds into local patches, whose respective field
is similar to SIRA. A patch-level discriminator D(·) with
PointNet architecture is then adopted to discriminate each



patch independently. As the patch is small enough, it en-
ables the network only focuses on the low-level difference
between synthetic and real domains without considering the
potentially existing semantic information. Moreover, ob-
serving that local density may change after re-sampling the
point cloud positions, we apply a multi-scale structure to
the discriminator to enhance its robustness against different
densities. In detail, features of different ranges of patches,
i.e., small, medium, and large patches with 5, 10, and 20
points respectively, are extracted and concatenated before
being fed into the classifier.

3.4. Registration

Given a source point cloud P∈RN×3 and a target point
cloud Q∈RM×3, the objective of point cloud registration is
to attain the rotation R∈SO(3) and translation t∈R3 that
align the source to the target.

We validate the effectiveness of our approach based on
the previous state-of-the-art GeoTrans [51]. It adopts the
KPConv-FPN backbone to simultaneously down-sample
the input point cloud and extract hierarchical point-wise
features. A point-to-node strategy is then used to assign
the dense points to coarse nodes, splitting the point cloud
into several non-overlapping patches. Further, a coarse-to-
fine strategy is used to find overlapping patches between
the input point clouds and concurrently to find correspon-
dences between two overlapping patches. Finally, to re-
cover the alignment transformation between the inputs, it
designs a local-to-global registration strategy (LGR) to re-
place RANSAC, which suffers from slow convergence ow-
ing to its high iterations. LGR first generates the transfor-
mation candidates using the correspondences within each
local patch pair. Then, it selects the best transformation by
validating it on all correspondences in the entire point cloud,
which achieves fast and accurate registration.

3.5. Loss Functions

We adopt different loss functions for the sim-to-real do-
main adaptation and 3D point cloud registration, respec-
tively. For the former, unlike related works [15, 71] in
3D point cloud semantic segmentation, we have to strictly
guarantee the geometric consistency between point clouds
before and after modifying by SIRA, since the input point
clouds are required to be in the same shape in their over-
lap regions for registration; otherwise, correspondences be-
come mismatching, which is unreasonable. To achieve this,
we introduce Chamfer Distance to constrain the geometric
similarity between Ps and P̂s, i.e.,

LCD=
∑

ps∈Ps

min
p̂s∈P̂s

∥ps−p̂s∥22 +
∑

p̂s∈P̂s

min
ps∈Ps

∥ps−p̂s∥22. (5)

Besides, we adopt the loss functions in LS-GAN [43],
which consists of LG(·) and loss LD(·) for training the

generator and discriminator, respectively. More precisely,
LG(·) is formulated as

LG = EPs∼Ps
[
(D(G(Ps))− c)2

]
, (6)

where Ps denotes the distribution of synthetic point clouds.
Meanwhile, LD(·) is written as

LD = EPr∼Pr
[
(D(Pr)− b)2

]
+ EPs∼Ps

[
(D(G(Ps))− a)2

]
,

(7)
where Pr denotes the distribution of real point clouds. We
set a = 0 and b = c = 1. In total, the loss function for
sim-to-real domain adaptation is

LDA = LG + LD + λGLCD, (8)

where we introduce a dynamic weight λG = exp(−10LG)
to balance their contributions.

To train the network for registration, we adopt the loss
functions used in [51]. The registration loss LR consists of
an overlap-aware circle loss LC and a point matching loss
LP . Specifically, LC = (LP

C + LQ
C )/2, where

LP
C =

1

|A|
∑

PP
i ∈A

log[1+
∑

PQ
j ∈εip

eλ
j
iβ

i,j
p (d

j
i−∆p) ·

∑
PQ

k
∈εin

eβ
i,k
p (∆n−dki )].

(9)
Here, A is the set of anchor patches, which is comprised of
the patches in P, having at least one positive patch in Q. For
each anchor patch PP

i ∈A, εip and εin denotes the set of its
positive and negative patches in Q separately. dji is the dis-
tance in the feature space, and λj

i = (oji )
1
2 and oji represents

the overlap ratio between PP
i and PQ

j . βi,j
p = γ(dji −∆p)

and βi,k
n =γ(∆n−dki ) are the positive and negative weights,

respectively. The margins ∆p and ∆n are set to 0.1 and 0.4,
respectively. The same goes for the loss LQ

C on Q.
Moreover, for the i-th single patch, the point matching

loss is computed as

LP,i = −
∑

(u,v)∈Mi

log z̄iu,v −
∑
u∈Ii

log z̄iu,mi+1 −
∑
v∈Ji

log z̄ini+1,v,

(10)
where Mi denotes the set of ground-truth point correspon-
dences extracted with a matching radius τ from each Ĉ∗

i

and {Ĉ∗
i } denotes the randomly sampled Ng ground-truth

point correspondences. z̄iu,v is the element in the u-th
row and the v-th column of the soft assignment matrix
Z̄i ∈ R(mi+1)×(ni+1). Additionally, Ii and Ji denote the
sets of unmatched points in the two patches.

4. Experiments
4.1. Experimental Settings

Datasets. We adopt three datasets to build our Flying-
Shapes dataset. The first one is 3D-FRONT [21], a large-
scale dataset of synthetic 3D indoor scenarios, which con-
tains 18,968 rooms with 13,151 CAD 3D furniture objects



Model 3DMatch 3DLoMatch
RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑

PerfectMatch [25] 2.199 0.071 78.4 3.528 0.103 33.0
FCGF [12] 1.949 0.066 85.1 3.147 0.100 40.1
D3Feat [6] 2.161 0.067 81.6 3.361 0.103 37.2
PREDATOR [29] 2.029 0.064 89.0 3.048 0.093 59.8
CoFiNet [80] 2.011 0.062 89.3 3.280 0.094 67.5
GeoTrans [51] 1.625 0.053 91.5 2.547 0.074 74.0
RegTR [79] 1.567 0.049 92.0 2.827 0.077 64.8

Our SIRA-PCR† 1.609 0.052 91.5 2.474 0.074 67.4
Our SIRA-PCR‡ 1.539 0.051 94.1 2.388 0.072 76.6

Table 1. Registration results on 3DMatch and 3DLoMatch. †: the
model is only trained on the synthetic dataset. ‡: the model is fine-
tuned on 3DMatch. The best and second-best results are marked
in bold and underlined for better comparison.

from 3D-FUTURE [22]. The layouts of rooms are created
by professional designers and distinctively span 31 scene
categories and 34 object semantic super-classes. To enrich
the geometric structure, two other datasets are applied as
complementary components. ShapeNet [10] is a richly-
annotated large-scale repository of object-level 3D CAD
models. It contains 55 common object categories, which
include about 51,300 unique 3D models. Structured3D [84]
is a photo-realistic dataset. It contains 3,500 house designs
created by professional designers. We use its depth images
to generate point cloud pairs for registration.

To evaluate the effectiveness of different methods, we
employ two benchmarks in our experiments. The first one
is 3DMatch [81], a widely-used indoor dataset containing
62 scenes among which 46/8/8 scenes are used for train-
ing/validation/test, respectively. Following [29], we split
its test set to 3DMatch and 3DLoMatch whose point cloud
pairs have 30% and 10%-30% overlap. Second is ETH [48],
an outdoor dataset containing 4 scenes, which is collected
by a laser scanner and includes 713 pairs made up of 132
point clouds. It is extremely challenging due to the luxuri-
ant trees and small facilities in the scenes.

Evaluation metrics. Following [6, 29, 51, 79, 66], we
use several metrics to evaluate our method: (i) Registration
Recall (RR), the fraction of successfully registered point
cloud pairs whose transformation error RMSE is below
0.2m/0.5m for 3D(Lo)Match/ETH; (ii) Inlier Ratio (IR),
the fraction of inlier correspondences whose residuals are
below 0.1m/0.2m for 3D(Lo)Match/ETH among all hy-
pothesized correspondences; (iii) Feature Matching Recall
(FMR), the fraction of point cloud pairs whose IR is higher
than 5%; (iv) the median of the average Relative Rotation
Error (RRE) and (v) the median of the average Relative
Translation Error (RTE) for the successfully registered pairs
whose RMSE is below 0.2m/0.5m for 3D(Lo)Match/ETH.
Implementation details. To construct FlyingShapes, we
randomly select 200 scenes from 3D-FRONT, generating
107,641 pairs with 21,550 fragments. All rendering pro-

# Samples
3DMatch 3DLoMatch

5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑
PerfectMatch [25] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [12] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [6] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [3] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
PREDATOR [29] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [65] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [80] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTrans [51] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
OIF-PCR [75] 98.1 98.1 97.9 98.4 98.4 84.6 85.2 85.5 86.6 87.0
RoReg [66] 98.2 97.9 98.2 97.8 97.2 82.1 82.1 81.7 81.6 80.2

Our SIRA-PCR† 97.7 97.9 97.7 97.7 97.6 81.7 82.0 82.6 82.6 82.1
Our SIRA-PCR‡ 98.2 98.4 98.4 98.5 98.5 88.8 89.0 88.9 88.6 87.7

Inlier Ratio (%) ↑
PerfectMatch [25] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [12] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [6] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [3] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
PREDATOR [29] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [65] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [80] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTrans [51] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
OIF-PCR [75] 62.3 65.2 66.8 67.1 67.5 27.5 30.0 31.2 32.6 33.1
RoReg [66] 81.6 80.2 75.1 74.1 75.2 39.6 39.6 34.0 31.9 34.5

Our SIRA-PCR† 66.3 74.1 79.8 82.1 83.6 35.9 41.4 47.7 50.4 52.3
Our SIRA-PCR‡ 70.8 78.3 83.7 85.9 87.4 43.3 49.0 55.9 58.8 60.7

Registration Recall (%) ↑
PerfectMatch [25] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [12] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [6] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [3] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
PREDATOR [29] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [65] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [80] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTrans [51] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
OIF-PCR [75] 92.4 91.9 91.8 92.1 91.2 76.1 75.4 75.1 74.4 73.6
RoReg [66] 92.9 93.2 92.7 93.3 91.2 70.3 71.2 69.5 67.9 64.3

Our SIRA-PCR† 90.4 89.6 90.6 90.6 90.1 65.0 65.0 64.2 63.3 63.3
Our SIRA-PCR‡ 93.6 93.9 93.9 92.7 92.4 73.5 73.9 73.0 73.4 71.1

Table 2. Evaluation results on 3DMatch and 3DLoMatch. †: the
model is only trained on the synthetic dataset. ‡: the model is fine-
tuned on 3DMatch.

cesses are operated in Blender. The horizontal/vertical FoV
of virtual cameras is set to 60.0°/46.8°. Depth is clipped to
[0.3m, 3.0m] and resolution is 640×480. For training SIRA,
we choose a similar number of point clouds as the training
set of 3DMatch from 25 scenes of FlyingShapes. Note that
synthetic point clouds are applied Truncated Signed Dis-
tance Function (TSDF) fusion to smooth the density before
being fed into SIRA. Adam optimizer [32] is applied to train
the network with a batch size of one. All our experiments
are built upon GeoTrans [51]. We pre-train it on Flying-
Shapes with the learning rate set to 1e−4 for 40 epochs
and fine-tune it on the data processed by SIRA with the
learning rate set to 5e−6 for another 20 epochs. We further
finetune it on the training set of 3DMatch to obtain SIRA-



ETH

# Samples Feature Matching Recall (%) ↑ Inlier Ratio (%) ↑ Registration Recall (%) ↑
5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250

PerfectMatch [25] 95.6 94.3 80.5 69.1 51.4 19.7 16.7 12.4 9.3 6.6 81.4 73.5 59.3 46.5 35.0
D3Feat [6] 63.3 71.0 69.7 67.9 60.5 12.5 13.2 13.6 13.5 11.8 59.1 50.4 49.7 44.6 29.1
FCGF [12] 41.1 38.4 32.3 24.6 15.9 5.8 5.3 4.4 3.5 2.8 42.1 36.1 29.5 26.3 18.9
SpinNet [3] 99.4 99.1 94.6 87.2 66.6 23.2 20.4 15.7 11.9 8.6 96.0 91.1 81.9 71.5 54.3
PREDATOR [29] 65.6 64.5 59.6 52.0 40.5 11.1 10.3 8.5 6.8 5.1 74.7 72.9 67.7 60.3 51.7
CoFiNet [80] 82.5 83.7 81.9 81.1 79.9 9.6 9.8 9.9 9.9 9.8 83.9 82.7 81.9 77.4 68.8
RoReg [66] 96.5 95.6 93.1 92.0 84.1 28.4 25.4 21.7 20.8 17.5 97.1 97.1 95.7 92.3 84.3
GeoTrans [51] 60.5 67.5 75.7 79.0 79.8 6.9 9.2 12.1 13.7 14.6 80.9 76.8 73.3 72.8 70.8

Our SIRA-PCR† + RANSAC 86.4 94.7 98.1 99.0 98.7 9.9 13.8 18.7 21.7 24.1 96.4 95.9 97.3 96.2 95.4
Our SIRA-PCR‡ + RANSAC 79.2 87.3 93.6 94.7 93.2 8.7 11.8 15.7 17.6 18.5 93.8 91.8 88.4 85.1 82.2
Our SIRA-PCR† + LGR — 85.1 — — 9.3 — — 99.0 —
Our SIRA-PCR‡ + LGR — 79.0 — — 8.5 — — 97.1 —

Table 3. Evaluation results on ETH. †: the model is only trained on the synthetic dataset. ‡: the model is fine-tuned on 3DMatch. —:
results with different samples are not applicable for LGR since it uses all correspondences.

Figure 4. Qualitative comparison with state-of-the-art methods [29, 79, 51] on (a) 3DMatch and (b) 3DLoMatch.

PCR‡. All experiments run on four NVIDIA Tesla P40s.
We set the neighbor numbers to 100/30/30/30 for the corre-
sponding four stages of the KPConv backbone. Other hy-
perparameters are the same as [51]. For the results obtained
by RANSAC, we follow [6, 29, 51, 66], running 50k itera-
tions to estimate the transformation, and the inlier distance
threshold is set to 0.05m/0.4m for 3D(Lo)Match/ETH.

4.2. Evaluation on Indoor Benchmark

We first compare the registration results of our method
with the recent state of the arts in Tab. 1. Following [6, 12,
29, 51, 79], we report RRE and RTE for successfully regis-
tered point-cloud pairs. Without training on any real-world
dataset, our SIRA-PCR achieves even better performances
on the 3DMatch test set i.e., lower RRE and RTE under the
same RR, compared to our baseline GeoTrans [51]. Similar
to [71, 15], we further fine-tune our model on the 3DMatch
training set. It shows that our model clearly outperforms
our competitors. In particular, it improves the RR by 2.1/2.6
percentage points (pp) on 3DMatch/3DLoMatch compared
to the second-best method and achieves lower RRE and
RTE, which demonstrates the effectiveness of our approach.

We also evaluate the correspondence results compared
to other methods [25, 12, 6, 3, 29, 65, 80, 51, 75, 66]
under different numbers of sampled correspondences with
RANSAC, as shown in Tab. 2. It shows that our method
surpasses almost all competitors on the FMR and IR met-
rics. The performance of RR drops on 3DLoMatch since
RANSAC is more sensitive to the inlier distribution than
LGR. With a high inlier ratio, RANSAC and LGR show
similar performance; however, the performance obtained
by RANSAC degrades due to the uneven distribution of
inliers, where correspondences may concentrate on some
local patches. Fig. 4 provides the qualitative comparison.
Our method performs better in challenging cases, such as
repeated geometric structures and low overlap ratio, which
demonstrates its robustness.

4.3. Evaluation on Outdoor Benchmark

To evaluate the generalization, we conduct experiments
on the ETH dataset, as shown in Tab. 3. Following [66], we
directly use the models trained on 3DMatch without fine-
tuning. We also release the performance of our method only
trained on our FlyingShapes dataset. Without considering



Model 3DMatch 3DLoMatch
RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑

(a) Structured3D 1.695 0.055 85.5 2.852 0.078 48.6
(b) 3DFront 1.777 0.052 74.8 2.990 0.083 33.5
(c) + ShapeNet 1.660 0.049 85.6 2.672 0.076 55.1
(d) + Delete planes 1.675 0.052 87.0 2.638 0.074 57.4
(e) + Structured3D 1.672 0.051 87.5 2.521 0.074 63.8

Table 4. Ablation studies of FlyingShapes.

Model 3DMatch 3DLoMatch
RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓ RR ↑

(a) baseline 1.672 0.051 87.5 2.521 0.074 63.8
(b) uniform noise 1.589 0.051 88.6 2.570 0.075 62.7
(c) Gaussian noise 1.601 0.052 89.3 2.595 0.080 63.8
(d) TSDF 1.691 0.051 87.9 2.539 0.075 63.9

(e) w/o ARM 1.606 0.052 90.8 2.519 0.077 65.3
(f) w/o multi-scale 1.625 0.052 91.2 2.482 0.074 66.6

(g) SIRA† 1.609 0.052 91.5 2.474 0.074 67.4

Table 5. Ablation studies of SIRA. †: the model is only trained on
the synthetic dataset.

sample numbers, our method achieves the highest FMR, IR,
and RR. In terms of the RR metric, our method attains the
best performance which outperforms the second best by 1.9
pp, showing well generalization ability on outdoor scenes.
Interestingly, unlike the results on 3DMatch shown in Tab. 1
and Tab. 2, our models only trained on the synthetic dataset
outperform those fine-tuned on 3DMatch, which implies
that our FlyingShapes dataset benefits to improve the ro-
bustness and generalization ability of models. The qualita-
tive comparison is provided in Fig. 5. Our approach solves
the challenging case with unseen complex structures.

4.4. Ablation Studies

Extensive experiments are conducted on 3DMatch to un-
derstand the role of each component in our method.

Different Settings of FlyingShapes. We first show how
we generate an informative dataset from an unreliable syn-
thetic dataset in Tab. 4. The first two rows show that directly
training models on Structured3D and 3D-FRONT lead to
poor results. After inserting ShapeNet models using our de-
signed strategies, it brings a large improvement in the RR
metric on 3DLoMatch. An additional performance gain is
achieved by deleting planes in the scenes since the fraction
of different geometric structures becomes more balanced.
Finally, Row (e) shows that combining Structured3D en-
hances the feature description ability.

Necessity of SIRA. SIRA plays an important role in our
framework. First, we conduct experiments to demonstrate
its necessity. The model pre-trained on FlyingShapes is re-
garded as the baseline. To find out whether the gap between
the real and synthetic domains can be simply eliminated by
adding noises, we trained models on FlyingShapes with dif-
ferent types of noises whose magnitudes are close to the

Figure 5. Qualitative comparison with representative state-of-the-
art methods [51, 66] on the ETH.

Figure 6. Qualitative comparison between models with/without
SIRA on challenging cases in 3DLoMatch.

ones generated by SIRA. As is shown in Tab. 5, comparing
Rows (b) and (c), we find that common noises, e.g., uniform
noise and Gaussian noise, can only bring a tiny improve-
ment on 3DMatch, which indicates that the pattern gap has
not been mitigated. Moreover, comparing Rows (a) and (e)
shows that fine-tuning on the data processed by TSDF fu-
sion advances little performance, either. In a word, Rows
(a-d) mean that the domain gap can hardly be alleviated by
adopting existing common operations, which indicates the
necessity of our proposed SIRA. After using SIRA to pro-
cess the data before fine-tuning, the performance shown in
Row (g) outperforms the baseline by a large margin, which
demonstrates the domain gap has been mitigated. Fig. 6
illustrates some challenging cases which are confusing for
the model due to extremely low overlap and lack of salient
geometric structures in the overlap regions. With SIRA
adopted, the features extracted by models become strong
enough to solve these cases.

Components in SIRA. To better understand our proposed
components in SIRA, we ablate each of them separately.
First, we remove ARM and use the original point coordi-
nates to concatenate with features in the generator. Compar-
ing Rows (e) and (g), consistent performance decrements
are observed on both 3DMatch and 3DLoMatch, which re-
flects the effectiveness of ARM. Next, Comparing Rows
(f) and (g), introducing the multi-scale structure boosts the
performance, which means multiple receptive fields provide
extra useful information for the discriminator.



5. Conclusion
We present SIRA-PCR, a new 3D point cloud registra-

tion framework that enables models trained on synthetic
datasets to achieve better performance without relying on
any real-world dataset. To the best of our knowledge, we
build the first large-scale indoor synthetic dataset, Flying-
Shapes, for point cloud registration. Besides, we first ex-
plore the sim-to-real adaptation, SIRA, to alleviate the low-
level domain gap in this task. Experimental results also
confirm the state-of-the-art performance and robustness of
SIRA-PCR on both indoor and outdoor benchmarks.
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